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Abstract

The modular organization of brain networks has been widely investi-
gated using graph theoretical approaches. Recently, it has been demon-
strated that graph partitioning methods based on the maximization of
global fitness functions, like Newman’s Modularity, suffer from a resolu-
tion limit, as they fail to detect modules that are smaller than a scale
determined by the size of the entire network. Here we explore the effects
of this limitation on the study of brain connectivity networks. We demon-
strate that the resolution limit prevents detection of important details of
the brain modular structure, thus hampering the ability to appreciate dif-
ferences between networks and to assess the topological roles of nodes. We
show that Surprise, a recently proposed fitness function based on probabil-
ity theory, does not suffer from these limitations. Surprise maximization
in brain co-activation and functional connectivity resting state networks
reveals the presence of a rich structure of heterogeneously distributed
modules, and differences in networks’ partitions that are undetectable by
resolution-limited methods. Moreover, Surprise leads to a more accurate
identification of the network’s connector hubs, the elements that integrate
the brain modules into a cohesive structure.

Introduction

The brain is often represented as a network of interconnected, dynamically in-
teracting elements [1]. Cognitive processes are thought to result from the in-
tegration of neuronal processing distributed across these complex networks at
different temporal and spatial scales [2]. Hence, comprehension of the orga-
nizational principles of brain networks may provide a key to understand the
interplay between functional segregation and integration, and ultimately the
emergence of cognition and adaptive behaviors.

Neuroimaging methods provide a powerful means to study the brain struc-
tural and functional architecture. Indeed, neuroimaging data can be naturally
represented as networks, or graphs, with image voxels or anatomically defined
regions corresponding to the nodes, and a measure of similarity or connectedness
between nodes representing the edges. By way of example, correlations between
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spatially remote changes in the BOLD signal measured by Magnetic Resonance
Imaging have been used to define the strength of functional connectivity be-
tween different brain regions [3]. Similarly, white matter fibers interconnecting
different brain regions can be traced by Diffusion Tensor Imaging to build the
brain structural connectivity network [4]. The application of graph theoretical
methods to the analysis of neuroimaging data has provided important insights
into the topological organization of the central nervous system, and is attract-
ing increasing attention as a general and powerful framework to analyze brain
connectivity networks [1].

Of particular interest is the study of the modular structure of brain net-
works, i.e. the presence of subsets, or clusters, of nodes that are more densely
connected among themselves than to nodes in other modules [5]. This concept
originated in the study of social relationships and is sometimes referred to as
“community detection” [6]. In the context of neuronal networks, communities
can be interpreted as functionally or structurally segregated modules [7, 8], a
feature that is thought to confer robustness and adaptivity to the overall brain
network [5].

Several methods have been proposed to resolve the community structure
of complex networks [6, 9]. Many of these methods involve the definition of
a quality function that assigns positive or negative scores to edges connecting
nodes within or outside the same community, and heuristics to find the optimal
partition of the network that maximize this fitness function. The most popular
approach is Newman’s “Modularity maximization” and variations thereof [10].
Following the first demonstration by [11], partitioning of brain networks using
Modularity has been widely applied to assess the brain modular structure. A
few, large modules, including the Default Mode Network, the central network,
occipital and frontoparietal networks have been observed with remarkable con-
sistency across subjects and studies [5, 12].

Despite its popularity and merits, Newman’s approach presents some im-
portant limitations. Already at an early stage, Modularity-based methods were
shown to suffer from a resolution limit, as they fail to identify modules that are
smaller than a scale that depends on the size of the overall network [13]. As
a consequence, even unambiguously defined modules, like complete sub-graphs
or cliques, may be unduly merged into larger communities when they are too
small compared to the size of the network. Subsequent work by various groups
has shown that the resolution limit is quite pervasive [9, 14, 15, 16, 17], and
affects, to a different extent, many other methods, including Reichardt and
Bornholdt’s [18], Arenas and Gomez’ [19], Ronhovde and Nussinov’s [20], Ros-
vall and Bergstrom’s (Infomap) [21, 17] and others.

Fixes have been proposed to circumvent the resolution limit, including the
introduction of a tunable parameter that enables analysis of the network at an
adjustable resolution level [18, 22, 23]. However, this requires prior knowledge of
the expected size of the communities for the tuning of the resolution parameter.
Moreover, it has been shown that an adjustable resolution parameter may reduce
the tendency to merge small clusters, but only at the cost of unduly splitting
large clusters [16]. Adjustment of the resolution parameter is an attempt to
balance these two biases, but multiresolution methods fail to recover community
structures comprising heterogeneous distributions of cluster sizes [16].

However, real-world networks are characterized by the coexistence of clusters
of very different sizes, and no single parameter can adapt to the variety of
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network topologies observed in nature. Hence, the resolution limit may represent
a critical shortcoming for the study of brain networks and is likely to have
affected many of the studies reported in the literature.

Here, we explore the use of Surprise, a recently proposed fitness measure
grounded in probability theory, for the study of brain functional networks. Sur-
prise has been shown to outperform other metrics in the detection of small
communities [24, 25, 26], but the extent to which it is affected by the resolu-
tion limit is unclear. We show that, for graphs of the typical kind and size
encountered in the study of brain connectivity, Surprise does not suffer from
the limitations of Newman’s Modularity, and behaves as a resolution-limit-free
fitness function.

Application of Surprise maximization to the partition of diverse brain con-
nectivity networks reveals rich modular structures that comprise modules of
heterogeneous sizes, including large, distributed clusters, and functionally seg-
regated clusters of nodes that are very small compared to the size of the graph.
We discuss the important implications of these findings for the identification of
brain structures responsible for the integration of brain connectivity, and argue
that current models of the brain modular architecture based on graph theoreti-
cal approaches may have suffered from the shortcomings of the resolution limit
and should be revisited.

Theory

Notation and definitions

Let G = (V,E) be an unweighted, undirected graph, with n nodes and m edges
and p pairs of vertices. A clustering ζ of G is a partitioning of V into disjoint
sets of vertices ζi ⊆ V which we call communities. Each community consists of
ni vertices, mi edges and pi pairs of vertices. The number of total intracluster
edges mζ and intracluster pairs pζ are respectively the sum of mi and pi over
all communities.

If we take a graph G drawn uniformly at random from all possible graphs
with the same vertex set V and exactly m edges, the probability that G has
at least mζ intracluster edges and pζ intracluster pairs is given by the inverse
cumulative hypergeometric distribution:

S(ζ) :=

m∑
i=mζ

(
pζ
i

)(
p−pζ
m−i

)(
p
m

) . (1)

Equation 1 corresponds to an urn model without reinsertion, where S is
the probability of extracting at least mζ white balls out of m trials from an
urn containing pζ white balls and p − pζ black balls. For a clustering ζ, the
function S, from Surprise, computes the probability to observe in an uniform
random graph at least as many internal edges and pairs as in G. Intuitively,
the lower S(ζ), the better the clustering. It’s worth noting that S is the p-
value of a Fisher exact-test assessing how confidently one should reject the null
hypothesis that the intracluster density mζ/pζ is the same as the graph density
m/p. Optimal partitions with respect to S are those with the highest number
of intracluster edges and the smallest number of intracluster pairs. Due to
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numerical precision problems in the evaluation of large binomial coefficients,
Ŝ(ζ) = − log10 S(ζ) is often taken as measure of quality of the partition, with
higher values corresponding to better clustering. Different authors [27, 28], refer
to S as Surprise, whereas others [24, 25] use Ŝ. Hereafter we stick to the notation
of [24], where Surprise is indicated as Ŝ. Hence, in this notation, the optimal
partition of a graph is the one that maximizes Ŝ.

The resolution limit and Surprise

Fortunato and Barthelemy [13] first detected the resolution limit studying the
performance of Newman’s Modularity as a community detection method applied
to a graph G with m edges consisting of three subgraphs G0, G1, G2 where Gi =
(Vi, Ei), with |V (Gi)| = ni and |E(Gi)| = mi (Figure 1A). The connections
between the components are represented by m01,m02,m12, respectively. While
G1 and G2 are modules by construction, G0 may consist of many communities.

To illustrate the resolution limit, Fortunato and Barthelemy calculated the
values of Modularity Q in two different cases: in partition α, G1 and G2 were
considered as distinct communities, while in partition β they were merged into
the same module; the partition of G0 was arbitrary and identical in both cases.
As G1 and G2 are two different modules by construction, Qα is expected to
be larger than Qβ in all cases. However, it was shown that Qβ can exceed Qα
when the number of internal edges m1 and m2 is small compared with the total
number of edges in the graph m, thus preventing detection of small communities
even when they are complete graphs or cliques. Subsequently, other authors have
extended this analysis showing that the resolution limit affects a number of other
community detection algorithms, and suggesting that the problem may be quite
generally related with the use of non-local fitness functions [14, 15, 9, 16].

The resolution limit first highlighted by Fortunato and Barthelemy may be
particularly critical for the analysis of brain connectivity networks. By way
of example, certain functional processes, like color vision, have been described
as anatomically localized [29], while others, like working memory, have been
proposed to involve more globally integrated processing systems [30]. Hence, we
may expect the brain modular structure to comprise heterogeneously distributed
communities.

Whether the relatively uniform modular structure of brain connectivity,
highlighted by Newman’s Modularity and other community detection meth-
ods in many studies, reflects the true architecture of the brain organization or
is the result of the resolution limit is still unclear. Hierarchical approaches have
shown that large modules can be further subdivided, indicating that connec-
tivity networks show structure at different spatial scales [31]. However, these
findings do not provide information on the optimal partition of the network,
i.e. the optimal cut through the dendrogram representing connectivity at the
different scales. To this end, an optimization method that does not suffer from
the resolution limit would be needed.

Unfortunately, the resolution limit appears to be an intrinsic feature of many
methods that optimize global quality functions, and there appears to be “a
narrow scope to resolution-limit-free methods” [14]. Surprise has been shown to
outperform other network partitioning methods in the detection of small features
within large graphs, but the extent to which it suffers from the resolution limit is
unknown [24, 25, 26]. As pointed out by [24], while Modularity-based methods
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define a community as a region with an unexpectedly high density of links with
respect to the global characteristics of the network, Surprise weights the number
of actual intracluster edges against the maximum number of links given the
nodes in the clusters. Hence, Surprise is able to discriminate local subnetworks
whose internal density is close to that of a clique independently of their size.
In the following, we assess the extent to which the resolution limit may affect
Surprise.

Firstly, we have directly compared Newman’s Modularity and Surprise in
the example of Fortunato and Barthelemy. For the sake of illustration, we have
defined G1 and G2 as two identical cliques of 5 nodes connected to G0 by a single
edge (m01 = 1,m02 = 1), and to each other by m12 edges. G0 was defined as
a clique of variable size with a number of edges ranging from 45 to 2775. We
then computed the numerical difference of the quality functions Modularity and
Surprise for the two partitions α (red) and β (blue) as in Figure 1A and plotted
∆Q = Qα −Qβ and ∆S = Sα − Sβ as a function of the number of edges m0 in
the G0 clique. These plots are shown in Figure 1B,C.

The onset of the resolution limit occurs when ∆Q or ∆S change sign and
become negative for increasing values of m0. For m12 = 1, i.e. when the two
cliques G1 ad G2 were connected by only one edge (red curve), Q showed this
sign inversion for m0 ≈ 200 (Figure 1B). With increasing number of intercluster
edges m12, the resolution limit appeared for smaller values of m0, eventually
leading to ∆Q values that were always negative, i.e. the two cliques G1 and G2

were always merged by Modularity optimization.
Figure 1C shows that Surprise does not suffer from the resolution limit in

this specific case. Indeed, ∆S was always positive and grew monotonically with
increasing m0. Hence, the two cliques G1 and G2 were always resolved by
Surprise as separate communities independently of the network size, and also
in the presence of some “fuzziness”, i.e. when m12 > 1 and the two cliques
were connected by more than one edge. In order to assess whether this behavior
reflects a general property of Surprise, or is incidental to this particular example,
we have also studied a generalization of Fortunato and Barthelemy’s model.

Traag et al. [14] proposed a rigorous definition of resolution-limit-free graph
partitioning. A quality function is resolution-limit-free if, given an optimal
partition ζ of a graph G, any subpartition ζi is also optimal for the graph
induced by the nodes in ζi. In other words, each community of the optimal
partition is not split by optimization of the quality function applied to the
subgraph induced by the nodes in the community. Hence, each community does
not depend on the rest of the network and is both locally and globally optimal.

An important consequence of this definition is that a resolution-limit-free
method will never depend on the size of the network to merge cliques in a graph
comprising r cliques of n nodes connected in a ring structure as in Figure 2A.

This observation prompted us to explore the behavior of Ŝ in the ring of
cliques model graph, as an extension of Fortunato and Barthelemy’s model. Sur-
prise optimization can be seen as a multiobjective optimization problem where
one seeks to minimize the intracluster pairs while maximizing the number of
intracluster edges. With increasing graph size, the computational problem of
calculating Ŝ for every possible partition becomes rapidly intractable (maxi-
mization of S is NP hard)[28]. However, as pointed out by Fleck et al. [28], the
S-optimal clustering must be Pareto optimal with respect to minimizing pζ and
maximizing mζ , i.e. any further improvement in one of the two variables must
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occur at the expense of the other.
To delineate the Pareto frontier in the (mζ , pζ) space for the ring of cliques,

we solved m integer linear programs where we sought to minimize pζ while
keeping mζ equal to a constant k, with k ranging from 0 (trivial partition where
every vertex is a community) to m (trivial partition with all vertices in the
same community). Linear programs were solved using the Python interfaces
of Gurobi 5.7.3 on Linux (Gurobi Optimizer Version 5.7, Gurobi Optimization,
Inc., Houston, Texas, United States).

Figure 2B shows the Pareto frontier for a ring of cliques where we indepen-
dently varied the number of cliques r and the number of nodes n in every clique.
Interestingly, Ŝ increased monotonically along the Pareto frontier with increas-
ing pζ (Figure 2C), until it reached its optimum, indicated by black circles in
the Pareto frontier, for the partition that identified each clique as a separate
community. Importantly, in the range of parameters we have investigated, Sur-
prise optimization never merged cliques in the ring of cliques, independently of
the size of the graph, and behaved as a Traag’s resolution-limit free method.
While it is likely that this property is quite general and can be extended to every
ring of cliques, an analytical demonstration is hampered by the non-additivity
of the Surprise function. Nonetheless, the size of the graphs we have explored
numerically is quite typical of brain-connectivity networks and we feel encour-
aged to apply Surprise maximization to the study of the community structure
of the brain.

Methods

Surprise maximization

Community detection is a NP-hard problem, and heuristics have to be developed
for the optimization of quality functions for relatively large networks. In their
original paper, Aldecoa et al. [24] applied metaheuristics, involving the eval-
uation of S for partitions resulting from seven different community detection
methods, each of those maximizing different quality functions. Here, we sought
direct maximization of Surprise by exploiting FAGSO [32], an agglomerative
optimization algorithm that builds on a variation of the Kruskal algorithm for
minimum spanning tree [33]. The first step of this method consists in ranking
the edges in the graph in decreasing order by the Jaccard index of the neighbors
of their two endpoints vertices. An union-find data structure is used to hold
the community structure throughout the computation. At the beginning, each
community consists only of one vertex. Then, starting from the edge with the
highest Jaccard index at the top of the list, the endpoints are attributed to the
same community by disjoint-set union if this operation leads to a strictly better
Surprise and if they do not belong already in the same community. This step
is repeated for all edges and the final community structure is returned in the
disjoint-set. This method finds partitions with high Surprise and it is determin-
istic, unless two edges with the same Jaccard index are found. In this case, ties
are broken at random. The detailed pseudocode of this algorithm is reported in
the Supplementary Materials section, the code in C++, Python and GNU Octave

is available upon request.

6



Benchmark brain networks

We assessed the performance of Surprise maximization in the detection of the
community structure of two benchmark brain networks. All coordinate data
and functional metadata were taken from the BrainMap database [34, 35], pro-
cessed by Crossley et al. [36] and made available to the scientific community as
reference networks through the public Brain Connectivity Toolbox [37]. Ethical
statements are present in the original references by the groups who performed
the experiments.

The first network represents the coactivation of brain regions as obtained
from a meta-analysis of 1641 task-related fMRI or PET studies [36]. Meta-
analyses have been useful in estimating the frequency with which two brain
regions are consistently activated across different tasks and are an indication of
the behavior of the brain during activity. Jaccard similarity, i.e. the number
of studies activating both regions divided by the number of studies activating
either one of them, was used as index to evaluate strength of the coactivation of
638 parcellated brain regions. More details on the construction of the network
are available in [36].

The second network that we considered is a resting state functional connec-
tivity network obtained from correlations between time series of fMRI signals,
from a group study of 27 healthy subjects. The resting state network was built
using the same set of 638 regions and thresholded to have the same number of
edges as in the coactivation study. Both networks have been previously studied
using Modularity-based algorithms and node-classification methods [36].

Due to its definition in terms of binomial coefficients, Surprise can be com-
puted for integer values of its parameters. We have therefore binarized the two
adjacency matrices retaining an equal number of edges for both networks. While
the binarization process discards information contained in the edge weights,
a judicious choice of threshold can ensure robust decomposition of the net-
work [5, 38]. We have checked this statement by percolation analysis, a natural
and non-arbitrary method to derive binary graphs from continuous adjacency
matrices. Specifically, we have studied the size of the largest connected com-
ponent of the coactivation and resting state networks removing iteratively the
smallest weight edges.

This analysis, shown in Figure S1 of the Supplementary Materials, revealed
the presence of percolation-like transitions, whereby the largest component of
the network drops in jumps with increasing binarization threshold. For the
coactivation and the resting state networks we found that the thresholds adopted
by [36] of 0.015576 and 0.600, respectively, are above the first jump in the
size of the largest connected components and maintain network connectedness
while ensuring that the networks are sufficiently sparse and possess the same
number of edges. Hence, we adopted these thresholds for network’s binarization.
Analysis of the structures of networks obtained by a range of thresholds around
these values showed stable solutions, with Normalized Mutual Information close
between partitions close to 1, and a stable number of communities (Figures S2
and S3 in the Supplementary Information).
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Results and discussions

Figure 3 shows a direct comparison of the partitions obtained by Modularity
and by Surprise maximization for the coactivation and resting state networks.
The four panels display the adjacency matrices of the two networks, with their
vertices rearranged by their module membership.

By Newman’s decomposition, the resting state and coactivation brain net-
works present a modular structure with four large modules that have been
anatomically labeled as occipital, central, frontoparietal and Default Mode net-
works [36] (demarcated by a red line in Figure 3). These partitions are highly
similar (Rand Index 0.78), despite the different neurofunctional bases of the
two networks [39] and comprise modules that are relatively uniform in terms of
number of nodes and number of edges within each module.

The partitions obtained by Surprise maximization for the two networks are
shown in Figure 3B, 3D. Surprise found 51 communities, Ŝ = 8969.24, for the
resting state network, and 28 communities, Ŝ = 5725.65 for the coactivation
network. These modules are delimited by blue lines that show the wide dis-
tribution in size of the components, ranging from communities with 119 nodes
and 4586 edges down to singletons. The size distributions of the modules are
different for the two networks, with a more rapid drop and a fatter tail in the
coactivation network compared with the resting state network.

The complete list of communities, with anatomical labels and stereotaxic
coordinates for all nodes [40, 41, 42], as well as the density and number of nodes
of each community found by Modularity and Surprise optimization, are reported
in a tabular form in the Supplementary Materials (Table S1-S4).

Analysis by Surprise suggests that the modular structure of resting state
functional connectivity brain networks comprises modules of very different sizes,
in sharp contrast with previous studies that have used resolution-limited func-
tions like Newman’s Modularity (see [5] for a review). To emphasize this point,
we have also partitioned the coactivation and resting state networks using In-
fomap [21] and a multiscale version of Modularity with an adjustable resolution
parameter [18] provided by the Brain Connectivity Toolbox [37]. Interestingly,
increasing the resolution parameter results in a larger number of smaller com-
munities that are however characterized by a relatively homogenous size distri-
bution, a result of the intrinsic scale built into these methods (results shown in
the Supplementary Material, Figure S4). Additionally, we have made a quan-
titative comparison between the partitions obtained by Surprise, Infomap and
the Reichardt and Bornholdt’s method [18] by calculating the Normalized Mu-
tual Information between the resulting community structures (Tables S6 and
S7 in the Supplementary Material). Despite the fact that these methods re-
trieve a few more modules that Newman’s Modularity, they fail to capture the
heterogeneous distribution of clusters revealed by Surprise.

In order to assess the significance in neurofunctional terms of the finer par-
titions obtained by Surprise, we show the node distribution as an overlay of
the MNI brain atlas template for the 10 largest modules of the resting state
network in Figure 4. The communities highlighted by Surprise show a corre-
spondence with some well known functional networks previously identified by
multivariate analysis (e.g. Independent Component Analysis) of functional MRI
data [43, 44, 45, 46], and with well defined, segregated anatomical or functional
districts.
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The largest communities of the resting state network correspond to the pri-
mary sensorimotor cortex [47], primary visual and extra-striate visual network,
fronto-parietal lateralized networks [39] as well as the so-called default mode
network (DMN) [43, 48]. The attentional frontoparietal networks (FPAN) [49]
were detected as two separate, lateralized subnetworks, in agreement with [46]
although other studies have identified a single, bilateral FPAN [50].

Smaller networks, like the executive control and auditory networks [44, 51]
were also resolved by Surprise, as well as subcortical structures, like the hip-
pocampal and thalamic formations [52, 53]. Interestingly, the thalamic nuclei
appear as one tight community, despite the fact that they are structurally uncon-
nected, in keeping with the idea that functional connectivity does not necessarily
require the presence of strong structural links.

The more accurate partition afforded by Surprise may enable identification
of differences in the modular structures of networks that cannot be appreciated
with a resolution limited method. By way of example, we have compared the
partitions of the resting state and coactivation networks (Figure 5). Indeed,
these networks are of a different nature, the former representing intrasubject
baseline fluctuations in the brain’s resting state, and the latter the responses
to a variety of different tasks across subjects. However, Newman’s Modularity
finds similar partitions for these two networks, with 4 large modules each. Con-
versely, under Surprise maximization, the partition of the resting state network
shows many more small communities comprising less than 5 nodes (32 in total)
compared with the coactivation one (only 11). Moreover, certain communities
of the resting state network appeared to be split into smaller modules in the
coactivation matrix. By way of example, the cuneus and the lingual and peri-
calcarine gyri were part of the occipital visual module in the resting state, but
not in the coactivation network, where they formed a separate community (first
row of Figure 5). Similarly, the precuneus and medial parts of the postcentral
girus were identified as an independent community in the coactivation network,
while they were part of the broad somatosensory network in the resting state
connectivity graph [54] (second row of Figure 5). Interestingly, the Broca area,
indicated as Module 11 in Figure 5, was separated from the auditory network
in the coactivation network, and identified as a small, but anatomically and
functionally distinct, community. Conversely, other communities were split in
the resting state but not in the coactivation network. The executive and atten-
tional control networks were merged into a large community in the coactivation
network, while they were separated under resting state conditions, including a
subdivision of the left and right fronto-parietal networks (third row of Figure
5).

While the resting state and coactivation networks appeared to possess virtu-
ally identical modular structures under Newman’s analysis, they showed func-
tionally and anatomically relevant differences when analyzed by Surprise maxi-
mization, with a Normalized Mutual Information between the partitions of the
two networks of 0.5922. Indeed, Modularity tends to assign small communities
to larger structures even when they correspond to tightly knit modules, thus
concealing differences in the graphs’ modular structures that involve aggrega-
tion or disaggregation of smaller clusters. It is conceivable that the detrimental
effects arising from the resolution limit may have affected previous studies com-
paring different populations [5]. Surprise may offer a sharper tool to detect
alterations of brain connectivity induced, for example, by psychiatric or neu-
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rological conditions, thus enabling the exploration of novel markers of brain
disease.

Besides the exploration of functional and anatomical segregation, under-
standing the modular structure of brain networks is critical for the interpreta-
tion and classification of the roles played by the nodes within the network struc-
ture [55]. Highly connected nodes, or hub nodes, are particularly important for
their topological centrality, and function as integrators. Hubs that primarily
connect to nodes within the same module are dubbed ”provincial hubs”, and
nodes that connect different modules are referred to as ”connector hubs”. The
former are thought to be responsible for the formation and stability of the mod-
ules, while the latter ensure integration of the activity of the different modules.
Obviously, interpretation of the hub’s role relies on the correct identification of
the optimal network partition, and may be strongly affected by the resolution
limit.

Here, we have performed a hub’s role analysis for the resting state and coac-
tivation networks under Modularity and Surprise maximization. To this end, we
have adopted Guimera’ and Amaral classification scheme [56], whereby nodes
are classified by their within-community degree z (a measure of how well con-
nected a node is to other nodes in the same community) and their participation
coefficient P , a parameter that is 0 for nodes with purely intra-module connec-
tions and 1 for nodes whose links project primarily to other modules.

Figures 6A and 6B show the different positioning of high-degree nodes in the
Guimera’ and Amaral plot for the coactivation and resting state networks par-
titioned using Newman’s approach and Surprise maximization. In this scheme,
provincial hubs are high-degree nodes that score high z and low P values (R5
region); conversely, connector hubs are characterized by larger P values (regions
on the right-hand side of the plot).

A finer partition in smaller communities may be expected to determine an
overall increase in participation coefficient and decrease in within-community
degree. However, the heterogeneous partitions obtained by Surprise maximiza-
tion resulted in non-trivial changes in the Guimera’ and Amaral classification.
By way of example, we discuss in greater detail two regions whose roles are very
different in the two partitions, to highlight the effects of the resolution limit.

Nodes that belong in the hippocampal formation show a large within-module
coefficient, and appear as provincial hubs (region R5 of Figure 6) under Mod-
ularity optimization. However, their participation coefficient increases 6-fold in
the partition by Surprise, which reveals a role as connectors for these nodes,
with widespread projections to many other modules across the brain, including
the module 3, 6, 8, 5, 2, corresponding to the DMN, the amygdala and parahip-
pocampal formation, the temporal inferior gyrus, the cuneus and lingual gyrus,
and the visual cortex, respectively. This finding is in agreement with the idea
that the hippocampus acts as “network convergence zone”, as it receives poly-
sensory input from distributed association areas in the neocortex [57].

Interestingly, the right shift in the Guimera-Amaral plot is less pronounced
for the nodes in the posterior part of the hippocampus (Figure 7). A differential
classification of the anterior and posterior hippocampus is consistent with the
hypothesis of a functional differentiation of this structure [58], with the poste-
rior hippocampus mostly involved in memory and cognition, and the anterior
hippocampus playing a role in the processing of stress, emotion and affect [59].
Moreover, studies in animal models have shown differential organization of the
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efferent connections of the hippocampal formation [60], consistent with different
functions for the anterior and posterior hippocampus.

Similar rightward shifts for nodes and hubs were observed in the resting
state network, and reported in Figure 6. However, increases in participation
coefficients are by no means the only differences in the classification of nodes
obtained by Surprise maximization. A prominent example is the precuneus
(PC) (Figure 6B, blue dots) that shows a high participation coefficient in both
partitions by Modularity and Surprise, but a much higher within-module degree
under Surprise maximization.

Indeed, the nodes comprised in the precuneus intrinsically possess high inter-
cluster connectivity, but are distributed among the four modules found by Mod-
ularity. In the partition by Surprise they are grouped together, and this pre-
cuneal module as a whole plays a connector’s role integrating different commu-
nities (Figure 8), a hypothesis that is consistent with the precuneus supporting a
wide spectrum of highly integrated tasks, from visuo-spatial imagery to episodic
memory retrieval and self-processing operations [61].

In summary, partition by Surprise maximization results in very different
distributions of participation coefficients and within-module degree compared
to Modularity. These differences are not uniform across nodes, and arise from
the limited ability of Modularity to identify small modules. Finer partition by
Surprise reveals very different roles for some key brain areas, and suggests that
a systematic reanalysis of the topological roles of brain nodes and hubs may be
in order.

Limitations

A potential limitation of Surprise is related to its definition in terms of discrete
probability distributions. This makes Surprise suited for the study of binarized
networks. While the topological backbones of the networks we have investigated
appear quite robust against removal of lowest-weight edges and binarization, as
shown by our percolation and stability analyses (Supplementary Information,
Figures S1, S2, and S3), an extension to weighted networks would be desirable.
A recent observation [26] on the relation between Surprise and the relative
entropy between two probability distributions suggests that an asymptotical
expansion of Surprise may overcome this limitation, and enable application of
Surprise maximization to weighted networks as well.

The superior resolution afforded by Surprise may make it more vulnerable
than other methods to noise and experimental errors. Indeed, occasional mis-
assignments of nodes due to noise-induced changes in edge distribution are likely
to affect small modules, comprising only a few nodes, more than large ones.
Hence, experimental uncertainty also limits resolution, and a resolution-limit-
free method would not necessarily improve the quality of the partition in a
scenario dominated by noise.

To ascertain whether this is the case for the co-activation and resting state
networks investigated here, we have simulated the effects of experimental er-
rors by injecting noise into the distributions of weights prior to the binarization
procedure, thus introducing variability in the connectivity structure of the re-
sulting binary networks. We set levels of noise sufficient to perturb up to 10%
of the edges of the final binary network. Using this procedure, for each level
of noise we generated ten different graphs, and applied the Surprise Maximiza-
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tion algorithm to each of them. We found that the partitions of these graphs
were highly consistent with those of the original networks (fig. S5 in the Sup-
plementary Information). We should also stress that there is no constraint in
the FAGSO algorithm imposing inter-hemispherical symmetry of the partition.
Nevertheless, we observed homotopic correspondence in the community struc-
ture, and a close resemblance with established neurofunctional circuits (fig. 4
and fig. 5). Taken together, simulations of the effects of noise and qualitative
considerations on the neurofunctional significance of the modules identified by
Surprise corroborate the idea that experimental error is not the predominant
factor in the networks investigated in this paper.

A final and important point we should highlight is that Surprise maximiza-
tion, in the implementation we have used here, does not allow for overlapping
communities. Other methods have been applied to investigate this aspect in
brain networks [62, 63]. However, a recent comparative analysis of graph parti-
tioning algorithms on a variety of benchmark networks [9] has shown that these
methods are also prone to merging overlapping communities, with relatively
modest performance in recovering heterogeneous cluster distributions planted
in model networks.

Despite these potential limitations, the resolution-limit-free behavior of Sur-
prise makes it an excellent tool to explore and to overcome the effects of the
resolution limit in the modular structure of brain connectivity networks.

Conclusions

In conclusion, we have shown that Surprise, a recently proposed fitness function
for graph partitioning, behaves like a resolution-limit-free function. We have
applied Surprise maximization to study the modular structures of two different
brain networks. Surprise maximization resulted in partitions comprising com-
munities of widely distributed sizes, consistent with the idea that small and
large modules coexist in brain networks. Moreover, the finer partition afforded
by Surprise made it possible to appreciate differences in the modular structures
of diverse brain networks that were undetected by resolution limited methods
like Newman’s Modularity. Finally, the use of Surprise revealed the deleterious
effects of the resolution limit in the classification of nodal roles. Altogether,
these results indicate that the resolution limit may have substantially affected
many of the analyses of brain connectivity networks reported in the literature,
and call for a revisitation of some of the conclusions and models that have relied
on Modularity maximization or similarly resolution-limited algorithms. Surprise
appears as a promising alternative method that appeals to the intuition that
tightly-knit clusters of nodes represent legitimate structural or functional mod-
ules independently of their size.
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[62] Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping
community structure of complex networks in nature and society. Nature
435, 814–818 (2005).

[63] Ahn, Y.-Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multi-
scale complexity in networks. Nature 466, 761–764 (2010).

Acknowledgements

The authors wish to thank Prof. J.A. Assad and Dr. S. Panzeri for criti-
cally reviewing the manuscript, Robert Volcic for insightful comments and Prof.
Pasquina Marzola for her continuing support.

16



Author contributions

C.N, A.B. conceived the experiments, C.N. conducted the experiments, C.N.
and A.B. wrote the paper and reviewed the analysis. All authors reviewed the
manuscript.

Additional information

Competing financial interests

The authors declare no competing financial interests.

17



List of captions

Figure 1: Analysis of the onset of the resolution limit for Modularity and Sur-
prise in a model graph (A) consisting of two cliques, G1 and G2, and a size-
varying components G0. The red line indicates the partition α, with G1 and G2

as different modules, and the blue line the partition β, with G1 and G2 merged
into a single module. The graph (B) shows the difference in Modularity for
increasing number of edges in G0. The same is shown in (C) for Surprise.
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Figure 2: Behavior of Surprise for different partitions of a ring of cliques (A) of
varying size. n denotes the number of nodes in each clique, and r the number
of cliques in the graph. (B) shows the Pareto frontier for various values of n
and r. The black circle corresponds to the optimal partition by Surprise. (C)
shows the value of Surprise for each point of the Pareto frontier. The peak value
corresponds to the optimal partition where each clique of the ring represents a
separate module.
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Figure 3: Modular structure of the coactivation and resting state networks under
Modularity and Surprise maximization. The node indexes have been reordered
by membership to highlight the modules, which are demarcated by a red line,
for Modularity, or a blue line, for Surprise. Modularity maximization identifies
only four, large modules, consistent with previous analysis of these data-sets.
Surprise reveals a much finer and complex modular structure.

Figure 4: The ten largest modules found by Surprise in the resting state net-
work overlaid on an MRI brain template. The module indexes are ordered by
decreasing size. The modules are named after corresponding functional networks
previously identified by multivariate analysis of resting state fMRI data.
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Figure 5: Comparison of selected modules in the partition obtained by Surprise
in the resting state and coactivation networks. The indexes are inversely ranked
according to the size of the modules in their respective networks.
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Figure 6: Classification of representative nodes according to their intra- and in-
termodule connections for the resting state (A) and coactivation (B) networks.
Empty circles and full circles indicate the position of each node in the Guimera’
and Amaral’s plot after partition by Modularity or Surprise, respectively. An
overall increase in the participation coefficient, a measure of the intermodule
connectivity, is observed for the Surprise partition relative to the Modularity
partition. To avoid cluttering of the graph, we only reported those nodes with a
degree higher than the average within a Standard Deviation, and whose classifi-
cation is different in the two partitions. The abbreviations of the brain regions
corresponding to the nodes are reported in the Supplementary material, Table
S5.
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Figure 7: Top panel: classification of all the hippocampal nodes according to the
Guimera’ and Amaral’s scheme for the coactivation network. Empty circles and
full circles indicate the position of each node after partition by Modularity or
Surprise, respectively. Bottom panel: anatomical positions of the nodes in the
hippocampal formation, colored by Surprise community membership. The in-
crease in participation coefficient upon partition by Surprise is more pronounced
for nodes in the anterior part of hippocampus, with an antero-posterior gradient.
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Figure 8: Top panel: classification of the precuneal nodes according to the
Guimera’ and Amaral’s scheme for the resting state network. Empty circles
and full circles indicate the position of each node after partition by Modularity
or Surprise, respectively. Bottom panel: anatomical positions of the nodes in
the precuneus, colored by Surprise community membership. The nodes in the
dorsal part of the precuneus exhibit a sharp increase in within-module degree.
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